Clinical Genotyping of Non–Small Cell Lung Cancers Using Targeted Next-Generation Sequencing: Utility of Identifying Rare and Co-mutations in Oncogenic Driver Genes1

نویسندگان

  • Laura J. Tafe
  • Kirsten J. Pierce
  • Jason D. Peterson
  • Francine de Abreu
  • Vincent A. Memoli
  • Candice C. Black
  • Jason R. Pettus
  • Jonathan D. Marotti
  • Edward J. Gutmann
  • Xiaoying Liu
  • Keisuke Shirai
  • Konstantin H. Dragnev
  • Christopher I. Amos
  • Gregory J. Tsongalis
چکیده

Detection of somatic mutations in non-small cell lung cancers (NSCLCs), especially adenocarcinomas, is important for directing patient care when targeted therapy is available. Here, we present our experience with genotyping NSCLC using the Ion Torrent Personal Genome Machine (PGM) and the AmpliSeq Cancer Hotspot Panel v2. We tested 453 NSCLC samples from 407 individual patients using the 50 gene AmpliSeq Cancer Hotspot Panel v2 from May 2013 to July 2015. Using 10 ng of DNA, up to 11 samples were simultaneously sequenced on the Ion Torrent PGM (316 and 318 chips). We identified variants with the Ion Torrent Variant Caller Plugin, and Golden Helix's SVS software was used for annotation and prediction of the significance of the variants. Three hundred ninety-eight samples were successfully sequenced (12.1% failure rate). In all, 633 variants in 41 genes were detected with a median of 2 (range of 0 to 7) variants per sample. Mutations detected in BRAF, EGFR, ERBB2, KRAS, NRAS, and PIK3CA were considered potentially actionable and were identified in 237 samples, most commonly in KRAS (37.9%), EGFR (11.1%), BRAF (4.8%), and PIK3CA (4.3%). In our patient population, all mutations in EGFR, KRAS, and BRAF were mutually exclusive. The Ion Torrent Ampliseq technology can be utilized on small biopsy and cytology specimens, requires very little input DNA, and can be applied in clinical laboratories for genotyping of NSCLC. This targeted next-generation sequencing approach allows for detection of common and also rare mutations that are clinically actionable in multiple patients simultaneously.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bias-Corrected Targeted Next-Generation Sequencing for Rapid, Multiplexed Detection of Actionable Alterations in Cell-Free DNA from Advanced Lung Cancer Patients.

PURPOSE Tumor genotyping is a powerful tool for guiding non-small cell lung cancer (NSCLC) care; however, comprehensive tumor genotyping can be logistically cumbersome. To facilitate genotyping, we developed a next-generation sequencing (NGS) assay using a desktop sequencer to detect actionable mutations and rearrangements in cell-free plasma DNA (cfDNA). EXPERIMENTAL DESIGN An NGS panel was ...

متن کامل

Circulating Tumor DNA Detection in Early-Stage Non-Small Cell Lung Cancer Patients by Targeted Sequencing

Circulating tumor DNA (ctDNA) isolated from peripheral blood has recently been shown to be an alternative source to detect gene mutations in primary tumors; however, most previous studies have focused on advanced stage cancers, and few have evaluated ctDNA detection in early-stage lung cancer. In the present study, blood and tumor samples were collected prospectively from 58 early-stage non-sma...

متن کامل

Detection of Therapeutically Targetable Driver and Resistance Mutations in Lung Cancer Patients by Next-Generation Sequencing of Cell-Free Circulating Tumor DNA.

PURPOSE The expanding number of targeted therapeutics for non-small cell lung cancer (NSCLC) necessitates real-time tumor genotyping, yet tissue biopsies are difficult to perform serially and often yield inadequate DNA for next-generation sequencing (NGS). We evaluated the feasibility of using cell-free circulating tumor DNA (ctDNA) NGS as a complement or alternative to tissue NGS. EXPERIMENT...

متن کامل

Successes and limitations of targeted cancer therapy in lung cancer.

Human cancers usually evolve through multistep processes. These processes are driven by the accumulation of abundant genetic and epigenetic abnormalities. However, some lung cancers depend on a single activated oncogene by somatic mutation, termed 'driver oncogenic mutations', for their proliferation and survival. EGFR(epidermal growth factor receptor) mutations and ALK(anaplastic lymphoma kina...

متن کامل

Noninvasive genotyping and monitoring of anaplastic lymphoma kinase (ALK) rearranged non-small cell lung cancer by capture-based next-generation sequencing

Noninvasive genotyping of driver genes and monitoring of tumor dynamics help make better personalized therapeutic decisions. However, neither PCR-based assays nor amplicon-based targeted sequencing can detect fusion genes like anaplastic lymphoma kinase (ALK) rearrangements in blood samples. To investigate the feasibility and performance of capture-based sequencing on ALK fusion detection, we d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2016